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SUMMARY 

A flow problem in a complex three-dimensional domain with a free surface and mixed-type boundary 
conditions is solved by the boundary collocation method. The solution is expressed as a combination of 
source functions distributed all around the domain close to the boundary, plus a special basis function to take 
care of a corner singularity. The resulting procedure is compared with the boundary integral elements method 
and is found to be simpler and more flexible to implement and faster to compute. 

INTRODUCTION 

This paper deals with the problem of water flow in porous media. The problem is described in detail 
by Tal and Dagan,’.’ and we describe here only its main features: A system of parallel tunnels is 
excavated in a saturated rock of low permeability for storing oil or oil products (Figure 1). In order 
to contain the product, a permanent water inflow has to be maintained. This inward flow on the 
tunnel’s surface serves as a seal which prevents the stored products from escaping into the rock. The 
water is drained and evacuated from the bottom of the galleries to maintain a constant product 
level. In the absence of sufficient natural water recharge, this inward flow causes a continuous drop 
of the water table. Since in practice one is interested in maintaining a constant inflow and a fixed 
water table above the gallery’s roof, an artificial recharge has to be supplemented to the rock. A 
simple artificial recharge system is a battery of wells drilled in rows between galleries (Figure 1). 
Neglecting the end effects and for a large number of galleries the flow field repeats itself periodically 
and it is enough to solve for the flow in a basic cell, described in Figure 2. This cell is bounded by the 
gallery’s symmetry plane x = 0, the midplane between galeries x = xL,  the plane of the wells y = 0, 
and the midplane between wells y = y,. 

The water head (potential) cp in a saturated homogeneous isotropic rock satisfies the Laplace 
equation 

a z c p  a z c p  a z c p  
a x 2  a y z  a z z  

A c ~  =- + - + -=O,  ( x ,  y ,  Z)ER 

where the flow domain R and the Cartesian system x ,  y ,  z are defined in Figure 2. 
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A 

Figure 1. The system of storage tunnels and wells in a saturated rock 

C----.,-----t/ 
Figure 2. The basic three-dimensional cell 

The boundary conditions are as follows: on the planes of symmetry x = 0, x = xL, y = y ,  and on 
the impervious bottom z = - zb: 

On the gallery surface: 

( p = ( p g + z ,  z 2 z p  (3) 

(4) 
Y 
Yw 

cp = (pg + q z p  - z) + z, 0 < z <zp 

where yp and yw are the specific weights of the liquid product and water, respectively, and (pg = 
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P,/y,, where P ,  is the vapour pressure of the product. On the perforated portion of the well: 

cp = cpw, ( x  - xL)2 + y 2  = r& zwb < z < z,, ( 5 )  

where cp, is the water head in the well's wall, rw is the well's radius, z,b, z,, are the bottom and top 
edges of the perforated portion of the well (Figure 2). Finally, on the steady free surface z = ~ ( x ,  y )  
the two boundary conditions are 

cp = V ( X ,  Y )  (7) 
where W = (0, 0, - W )  is the vertical recharge vector on the free surface and n is the unit inward 
vector at the free surface z = q(x, y). 

Once cp is determined by solving (1) with the boundary conditions (2)-(7), the dimensionless 
velocity on the gallery wall is given by dcp/dn, the derivative in the direction of the inward normal 
vector, and the water discharge into the gallery is 

where A is the gallery surface. In a steady state the inward discharge is balanced by the well 
recharge Q,  and the natural recharge: 

There are two difficulties in computing the steady state cp: 
(a) The free surface position z = ~ ( x ,  y) is unknown beforehand. 
(b) The problem is essentially three-dimensional, with a boundary of a complex shape. 
Tal and Dagan'.' solved the problem successfully by using the boundary integral element 

method (BIEM). The purpose of the present work is to introduce a simpler and faster procedure 
based on the boundary collocation method (BCM). The application of the BCM to such a complex 
three-dimensional problem is made possible by a special choice of the basis functions, as explained 
in the following section. 

THE BOUNDARY COLLOCATION METHOD 

Let R be a domain in R2 or in R3 with a boundary r and consider the linear boundary value 
problem 

Lcp(x)=O, x d 2  (10) 

Bcp(x) = m, xel- (1 1) 

where L and B are linear (differential) functionals. In the BCM we use a set of solutions {cpi}r. of 
the problem (10). 

Lcpi(x)=O, XER, i =  1 ,..., N (12) 
to approximate the solution to the boundary value problem (lo), (1 1). The collocation 
approximation is defined as 

N 
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where the coefficients { u i }  are determined by the collocation conditions 

B@(x j )  = f ( x j ) ,  x j e F ,  j = 1,. . . , N (14) 
The points {x j }y=  are termed as collocation points and the conditions (14) simply say that the 
approximation @ satisfies the boundary conditions (1 1) at the collocation points. Assuming that 
the problem (lo), (1 1) is well posed, let cp denote its solution. Since @ automatically satisfies (10) the 
quality of the approximation @ z cp in R depends solely upon the quality of the approximation 
B@ z f on r. The Galerkin approach to this problem consists of determining the coefficients { u i }  
in (13) so that 11 B@ - f 11 is minimized where 1 1 . 1 1  is some norm of functions on r. We choose to use 
the collocation approach, since (a) it is much simpler to implement, especially for three- 
dimensional problems, and (b) as argued by L e ~ i n , ~  there is no clear advantage to the Galerkin 
approach over the collocation approach. 

Once the set of basis functions is chosen and a set of collocation points is fixed it only remains to 
solve the collocation equations (14) which can be written as 

N 

i =  1 
1 uiBcpi(xj), j = 1,. . . , N 

In our case the problem is a three-dimensional Laplace equation with mixed Dirichlet-Neumann 
boundary conditions. In the next section we describe the application of the BCM to this problem 
using a special choice of basis functions. Our motivation for using these special basis function arises 
from the works of Hardy4 and Franke’ on surface fitting. 

The relation of three-dimensional BCM to surface fitting is obvious, since we actually need to 
approximate a function ( f ( x ) )  on a two-dimensional domain r. The interpolation problem in R’ 
consists of approximating a surface f ( x , y )  from its values f j = f ( x j , y j )  at N distinct points 
(xi, y j f=  1. Hardy4 proposed to use for this purpose the set of reciprocal multiquadric basis 
functions 

cpi(X, y )  = [ ( x  - Xi)’ + (y - y,)’ + d 3  - 1’2, 1 < i < N (16) 
where the parameters d i  depend upon the distribution of data points. The approximating surface 

is determined by the interpolation equations 

@ ( x j ,  y j )  = fj, j = 1,. . ., N .  (18) 

Recently, Micchelli6 proved that the system(’*) is always regular. Also, according to Franke,’ the 
above method is one of the best global surface interpolation methods. 

In fact Hardy’s original motivation for using this set of basis functions originates from a 
Dirichlet problem in a half space: 

Given the approximation (17) over R2 we readily have an approximate solution to the problem (19) 
in the half space z < 0 in the form 

N 
@ ( x ,  y ,  z )  = c Cri [ (X  - Xi)’ + ( y  - y,)’ + (2 - dJ’] - l’’ 

i =  1 

since each term in this sum satisfies Laplace’s equation for z < 0. Using the maximum principle for 
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the Laplace equation 

i.e. the error in the approximation @ to the solution of (19) is bounded by the maximum error of the 
approximation to the surface f(x, y) by Hardy’s reciprocal multiquadrics. 

Altogether the above method consists of solving Laplace’s equation by a combination of 
fundamental solutions, or source functions, and this approach is of course not new. Approxim- 
ations of flow fields around rockets on ships are often obtained by combinations of source 
functions with source points placed on symmetry axes of the body. Mathon and Johnston’ 
introduced a non-linear procedure by which an optimal distribution of source points is found. 
However, this approach is too expensive even for two-dimensional problems, and therefore it can 
be used only for cases in which the flow field is not too complicated and thus can be approximated by 
a few source functions. Hardy’s idea of distributing many source points close to the boundary 
makes the collocation method practical even in complex three-dimensional cases, such as the 
subject of this work. Actually, the idea of distributing sources close to the boundary can also be 
viewed as a variation of the boundary integral equation method* in which sources are distributed 
right on the boundary. 

For the location of the source points in the three-dimensional case we make use of the experience 
gained in surface fitting by Hardy’s multiquadrics. The rule of thumb is di = 0*825Ai where Ai is a 
local average distance between data points near (x i ,  yi). In collocation terms the points x i  = 
(xi, yi, 0) are collocation points for the problem (19) and the parameters di are termed shift 
parameters. For a Laplace equation over a general domain l2 with a boundary r, we first 
choose N collocation points xieT. Then we use the above rule of thumb to determine the 
shift parameters di, and the source points are chosen as x i  + nidi where n, is a unit outward normal 
vector to r at xi. 

The collocation approximation to the solution of the boundary value problem (lo), ( 1  l), with 
L = A in three-dimensions, is given by 

N 
@(x) = C ailx - ( x i  + nidi)l 

i =  1 

where the a;s are determined by the system of linear equations 
N 

i =  1 
1 aiBIxj-xi-nidiI-’=f(xj), j =  1,2 ,..., N 

IMPLEMENTATION AND NUMERICAL RESULTS 

Before solving our flow problem we adopt a major simplification of the boundary condition (9, 
following Tal and Dagan,’ by replacing the well by a series of line sources. This approximation is 
highly satisfactory if the radius/length ratio (rw/Lw) is very small, as is usually the case: 

M 4i [ (x - x,)’ + (Y - y,)’ + ( z  - Zi)’] + ( z  - Z i )  
(pw(x, Y ,  z, = izl d o g  [(x - x,)’ + (y - y,)’ + (2 - zi+ 1)2]1/2 + (2 - zi+ 1 )  + c ;  

In the present numerical experiments we use the same series of line sources used by Tal and Dagan. 
rp, is singular on the line (x,, y,, z), z,b < z < zWt; therefore, as in Reference 2, we look for the 
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Figure 3. Boundary triangulation for the BIEM 

regular part of the flow cpr, defined by 

where ccpw is the flow due to the system of wells. 
The collocation method applied to the boundary value problem (1)-(6) can provide only an 

unsteady solution to the problem, since the steady free surface ~ ( x ,  y) is not known. Therefore, an 
iterative procedure has been adopted which starts with a horizontal free surface ~ ( x ,  y) = constant; 
then the b.v.p. (1)-(6) is solved, and (7) is employed to calculate the new free surface ~ ( x ,  y) to be 
taken for the next iteration. This process continues until the relative change in q is sufficiently small. 

The case represented in Figure 3 is one of a few appearing in Reference 2, and it is solved there by 
the BIEM. Figure 3(a) displays the initial state with a horizontal free surface and Figure 3(b) shows 
the steady-state shape resulting from the iterative process. The boundary triangulation is also 
changed from iteration to iteration, stretched up with the free surface. In applying the BCM the 
collocation points are initially chosen as the vertices of the triangulation used for the BIEM (207 
vertices). The source points are then obtained by a normal shift of the collocation points, with a 
shift parameter fixed by the above-mentioned Hardy rule of thumb. At this stage the corner points 
of the tunnel are excluded and this may be viewed as smoothing this corner. All the other corner 
collocation points are common to two or three surfaces on which different Neumann-type 
boundary conditions are specified, and therefore they serve as multiple collocation points. Each of 
these points correspondingly defines two or three source points as it is shifted to diverse directions 
normal to the surfaces forming the corner (Figure 4). Altogether, we obtain 244 collocation points 
(including multiplicity) and 244 source points and thus a square system of collocation equations. 
Actually; each source function is taken together with its reflections w.r.t. the x- and y-axes, so that 
the symmetry conditions acp/an = 0 on x = 0 and on y = 0 are satisfied exactly. 
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Figure 4. Collocation points and source points for the BCM 

In comparing the BIEM with the BCM, we note the following: 

1. The number of boundary points in the system of equations for the BCM is somewhat larger 

2. The matrices of the linear systems for both methods are full and well conditioned, 
3. It is much simpler to obtain the matrix for the BCM. 
4. Even though the BCM system is larger than the BIEM system, the CP time for one iteration is 

5. The same number of iterations, seven, is required to achieve a stable free surface (relative 

6. The approximation obtained by the BCM is an easy-to-use function (22), analytic in the 

than that for the BIEM, 244 as opposed to 207. 

much smaller, 40s as opposed to 150s on a Cyber 170-855. 

change < 0.1 per cent) by both methods. 

domain R and on its boundary r. 
The last property is useful in examining the validity of the boundary conditions on a finer grid on 

the boundary, and that may serve us for two purposes: by comparing the appropriate boundary 
values of the approximation Cp with the exact boundary values (2)-(7) on a finer grid, we obtain a 
good approximation to 

el  =max 
xer I 

and 

e2 = max 
X E r 2  

Here rl and r2 are the boundary parts with specified Dirichlet-type and Neumann-type boundary 
conditions, respectively. By these error bounds for the boundary conditions and by using the 
maximum principle, we get an error bound for the overall error in Cp, 

xenur 
max I d x )  - Cp(x)l< el + e,M (28) 

where M = R 3 / x ,  (see Appendix for proof and definition of R). 
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The value of M may be reduced by a more careful analysis, but it depends only on the geometry of 
the problem. However, one can try to reduce the boundary errors e ,  and e ,  in order to gain a better 
global approximation. This may be done by an appropriate change of source points and 
collocation points. 

At the first stage, we take the collocation points as the vertices of the elements used by Tal and 
Dagan for the BIEM, and we choose the shift parameters by Hardy's rule of thumb. Then, by 
evaluating the error on a finer grid on the boundary, we locate the position at which the maximum 
error is attained. Changing appropriately the shift parameters and the collocation points in the 
neighbourhood of this maximal error position, one can usually reduce el  and e , .  This additional 
effort is, ofcourse, quite expensive and it is recommended only in cases in which there is a boundary 
region on which the errors are significantly prominent. 

The error bound (28) gives us an error bound for the location of the free surface after convergence 
to steady state. The steady-state solution is also verified by checking the flow balance (9), and this is 
satisfied with an error of less than 1 per cent. 

The accuracy of the method and its dependence upon the density of the collocation points is not 
yet well established. However, some indication of the order of approximation can be gathered from 
Franke's experiments with Hardy's method.' His results indicate at  least an o(h2)  convergence rate, 
where h is an average mesh size, and this rate in not too sensitive to the choice of the shift parameter 
di  in (1 6).  

In order to obtain some indication of the accuracy in our complex three-dimensional mixed 
boundary value problem, we performed some tests with a special set of boundary conditions for 
which the exact solution is known. The approximate solution developed by Tal and Dagan' was 
chosen as the known solution. It consists of a line of sources of the form (24) on the well, and two 
lines of sinks inside the tunnel. The various boundary conditions, computed directly from this 

Table I. Velocity components at points along the tunnel's 
corner (upper entry-approximated value, lower entry- 

analytic value) 

0.06 122 0.0 
0.05620 0 0  (LO, 1) 

0.06106 001016 
0.05612 0.00955 

(1,0.23, 1) 

0.05986 0.02997 
0.05487 0.02761 ( L O ?  1) 

0.05602 0.05737 
0.05063 0.05462 (1, 1 4  1) 

0.047 16 0.08401 
0.041 34 0.08330 
004232 0.09190 
003573 0.09134 

(1,2.33, 1) 

(43.5, 1) 

- 0.13343 
- 0.13275 
- 0.13298 
- 0.13249 
- 0.12947 
- 0.12891 
- 0.1 1802 
-0.11547 
- 0.09 1 19 
- 0'08632 
- 0.05 120 
- 0.0455 1 
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approximate flow, served as inputs to the boundary collocation method. We examined the error in 
cp at the collocation points where &plan is given and vice versa. A typical example of the accuracy 
obtained is shown in Table I. These results are for the flow components at the corner of the tunnel, 
a part of the boundary which is most significant for the problem at hand. Thus, the fact that the test 
function chosen is a reasonable approximation of the actual flow, suggests that the errors for the 
real problem should be similar. 

TREATING THE CORNER SINGULARITIES 

Mathematically, we expect singular behaviour of flow velocities near the bottom corner of the 
galleries. Up to now, we have ignored the corner and its singularities, since from an engineering 
point of view the local behaviour at the corner is not important. In this section, we tackle the 
problem of corner singularities in order to obtain a more accurate description of the flow pattern 
near the corner and to check the previous results. Another object of this section is to demonstrate 
treatment of singularities by the collocation method in a three-dimensional domain, with the 
special problems of a multiply connected domain. 

The singular behaviour at corners of solutions of the two-dimensional Laplace equation is well 
known.g The three-dimensional case is more complicated and there are almost no explicit formulae 
for the expansion .of the solution near a three-dimensional corner. To find the terms in the 
expansion one has to solve a local eigenfunction problem." In our case, the corner is essentially 
two-dimensional, and therefore we use the expansion known from the two-dimensional case. 

We first consider the two-dimensional region described in Figure 5. According to Lehman,' the 
asymptotic expansion of the solution of a Dirichlet problem near a corner of angle $ 7 ~  is 

cp(x, z) - (p(xc, z,) - cr2I3 sin 59 + O(r) 

as r + 0 where (r, 9) are cylindrical co-ordinates around (x0 z,). We would like to add to the basis of 
source functions a global harmonic function with the appropriate behaviour near the corner. Any 
basis function should be taken together with its reflection w.r.t. the z-axis in order to satisfy the 
symmetry condition &plan = 0 along the z-axis. Therefore, any basis function should satisfy the 
Laplace equation throughout the doubly connected region of Figure 5. The function r2l3 sin59 
itself cannot be used in our case, since it can be harmonic only in a domain with a cut from (x,, z,) to 
infinity, and it is discontinuous across the cut. 

Let 4' = x - iz and C, = x, - iz, then 

r2I3 sin $9 = Im([ - 4' , )2 /3  

Figure 5. Co-ordinate system for the singularity treatment 
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The function ([ - [c)2/3 is analytic in the complex plane cut from [, to co. Let lo = x, - iz, be any 
point in the hole of the domain, then the function 

is analytic in the complex plane cut from C, to [, and it behaves like ([ - 5c)2/3 as 5 .+ C,. Therefore, 
the function 

is harmonic in our domain and has the appropriate behaviour. We use this function, together with 
its reflection w.r.t. the ( y ,  z )  plane, to augment the basis of source functions for our 3-D problem. 
The point (x,, 0,O) is used as an additional collocation point to complete the collocation system. 

The point c0 can be any point inside the cavity. However, it has been found that the results are 
best when the distance I [, - [, I is of the same order of the smallest mesh size near the corner. In 
Figure 6 we exhibit the resulting normal velocities near the corner (on y = 0) with and without the 
additional singular basis function, and the difference between the two is significant. In Figure 7 we 
present the results with the singular basis function for two different choices of boundary 
collocation points. In all cases, the effect of the additional singular function was limited to the close 
neighbourhood of the corner. 

Figure 6. Normal velocities near the corner with (-) and without (---) singular term 
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Figure 7 Normal velocities near the corner for coarse (-) and fine (---) grids with the singular term 

CONCLUSIONS 

In this paper the boundary collocation method has been applied to solve a flow problem in a 
complex three-dimensional domain with mixed-type boundary conditions. The results were 
compared with those of Tal and Dagan’ using the boundary integral element method, and were 
found to be similar. The steady-state solution of the wells-tunnel system (Figure 3(b)), which for 
engineering purposes is expressed by the balance and the free surface location, turns out to be the 
same by the two methods. The simple global formulation of the new boundary collocation method 
is the reason for its main advantage, namely easy programing. Computation time is also shorter 
here, since the preparation of the matrices involved is faster. Local refinements are easily employed 
by adding collocation points, whereas in the boundary integral element method a complicated 
triangulation database has to be updated. As opposed to the efficiency of the boundary collocation 
method in the three-dimensional case, we note that collocation with fundamental solutions is not 
very efficient, and is not recommended for the solution of two-dimensional flow problems. 

APPENDIX 

Lemma 

Let u satisfy Au = 0 in a domain R c R 3  and satisfy the boundary conditions 

1.420, on rl (29) 
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and 

Theorem 

Let e satisfy Ae = 0 in the domain R described in Figure 2 and let 

el = max I e(x) 1 
X S r  I 

Then 

where M = R3/x, with R = max I x - (0, 0, xL) I. 
le(x)l < e l  + e,M 

xpr 
ProoJ: Let h be the harmonic function 

h(x) = - A ~ x  - ( E ,  E ,  xL)I + C 

where u r, = r, the boundary of R, and rl n T, = cp. Then u 2 0 in R u r. 
Proof is by the maximum principle. 

(34) 

For an arbitrary small E we can choose A and C such that h 2 el  on rl and ahIan < - e, on r,. 
Then u = h - e satisfies the conditions of the Lemma, and thus e < h. In the same manner it can be 
shown that - h < e. Taking the appropriate A and C, (33) follows. 
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